Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=2 ab=5\left(-7\right)=-35
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 5x^{2}+ax+bx-7. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,35 -5,7
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -35.
-1+35=34 -5+7=2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=7
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 2.
\left(5x^{2}-5x\right)+\left(7x-7\right)
ຂຽນ 5x^{2}+2x-7 ຄືນໃໝ່ເປັນ \left(5x^{2}-5x\right)+\left(7x-7\right).
5x\left(x-1\right)+7\left(x-1\right)
ຕົວຫານ 5x ໃນຕອນທຳອິດ ແລະ 7 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(5x+7\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
5x^{2}+2x-7=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-7\right)}}{2\times 5}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-2±\sqrt{4-4\times 5\left(-7\right)}}{2\times 5}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x=\frac{-2±\sqrt{4-20\left(-7\right)}}{2\times 5}
ຄູນ -4 ໃຫ້ກັບ 5.
x=\frac{-2±\sqrt{4+140}}{2\times 5}
ຄູນ -20 ໃຫ້ກັບ -7.
x=\frac{-2±\sqrt{144}}{2\times 5}
ເພີ່ມ 4 ໃສ່ 140.
x=\frac{-2±12}{2\times 5}
ເອົາຮາກຂັ້ນສອງຂອງ 144.
x=\frac{-2±12}{10}
ຄູນ 2 ໃຫ້ກັບ 5.
x=\frac{10}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±12}{10} ເມື່ອ ± ບວກ. ເພີ່ມ -2 ໃສ່ 12.
x=1
ຫານ 10 ດ້ວຍ 10.
x=-\frac{14}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±12}{10} ເມື່ອ ± ເປັນລົບ. ລົບ 12 ອອກຈາກ -2.
x=-\frac{7}{5}
ຫຼຸດເສດສ່ວນ \frac{-14}{10} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
5x^{2}+2x-7=5\left(x-1\right)\left(x-\left(-\frac{7}{5}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 1 ເປັນ x_{1} ແລະ -\frac{7}{5} ເປັນ x_{2}.
5x^{2}+2x-7=5\left(x-1\right)\left(x+\frac{7}{5}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
5x^{2}+2x-7=5\left(x-1\right)\times \frac{5x+7}{5}
ເພີ່ມ \frac{7}{5} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
5x^{2}+2x-7=\left(x-1\right)\left(5x+7\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 5 ໃນ 5 ແລະ 5.