Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

-8x^{2}-6x+5
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=-6 ab=-8\times 5=-40
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ -8x^{2}+ax+bx+5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-40 2,-20 4,-10 5,-8
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=4 b=-10
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -6.
\left(-8x^{2}+4x\right)+\left(-10x+5\right)
ຂຽນ -8x^{2}-6x+5 ຄືນໃໝ່ເປັນ \left(-8x^{2}+4x\right)+\left(-10x+5\right).
-4x\left(2x-1\right)-5\left(2x-1\right)
ຕົວຫານ -4x ໃນຕອນທຳອິດ ແລະ -5 ໃນກຸ່ມທີສອງ.
\left(2x-1\right)\left(-4x-5\right)
ແຍກຄຳທົ່ວໄປ 2x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
-8x^{2}-6x+5=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-8\right)\times 5}}{2\left(-8\right)}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-8\right)\times 5}}{2\left(-8\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -6.
x=\frac{-\left(-6\right)±\sqrt{36+32\times 5}}{2\left(-8\right)}
ຄູນ -4 ໃຫ້ກັບ -8.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2\left(-8\right)}
ຄູນ 32 ໃຫ້ກັບ 5.
x=\frac{-\left(-6\right)±\sqrt{196}}{2\left(-8\right)}
ເພີ່ມ 36 ໃສ່ 160.
x=\frac{-\left(-6\right)±14}{2\left(-8\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 196.
x=\frac{6±14}{2\left(-8\right)}
ຈຳນວນກົງກັນຂ້າມຂອງ -6 ແມ່ນ 6.
x=\frac{6±14}{-16}
ຄູນ 2 ໃຫ້ກັບ -8.
x=\frac{20}{-16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±14}{-16} ເມື່ອ ± ບວກ. ເພີ່ມ 6 ໃສ່ 14.
x=-\frac{5}{4}
ຫຼຸດເສດສ່ວນ \frac{20}{-16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=-\frac{8}{-16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±14}{-16} ເມື່ອ ± ເປັນລົບ. ລົບ 14 ອອກຈາກ 6.
x=\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{-8}{-16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
-8x^{2}-6x+5=-8\left(x-\left(-\frac{5}{4}\right)\right)\left(x-\frac{1}{2}\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{5}{4} ເປັນ x_{1} ແລະ \frac{1}{2} ເປັນ x_{2}.
-8x^{2}-6x+5=-8\left(x+\frac{5}{4}\right)\left(x-\frac{1}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
-8x^{2}-6x+5=-8\times \frac{-4x-5}{-4}\left(x-\frac{1}{2}\right)
ເພີ່ມ \frac{5}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-8x^{2}-6x+5=-8\times \frac{-4x-5}{-4}\times \frac{-2x+1}{-2}
ລົບ \frac{1}{2} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-8x^{2}-6x+5=-8\times \frac{\left(-4x-5\right)\left(-2x+1\right)}{-4\left(-2\right)}
ຄູນ \frac{-4x-5}{-4} ກັບ \frac{-2x+1}{-2} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-8x^{2}-6x+5=-8\times \frac{\left(-4x-5\right)\left(-2x+1\right)}{8}
ຄູນ -4 ໃຫ້ກັບ -2.
-8x^{2}-6x+5=-\left(-4x-5\right)\left(-2x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 8 ໃນ -8 ແລະ 8.