Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(5x-6\right)
ຕົວປະກອບຈາກ x.
5x^{2}-6x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 5}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-6\right)±6}{2\times 5}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-6\right)^{2}.
x=\frac{6±6}{2\times 5}
ຈຳນວນກົງກັນຂ້າມຂອງ -6 ແມ່ນ 6.
x=\frac{6±6}{10}
ຄູນ 2 ໃຫ້ກັບ 5.
x=\frac{12}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±6}{10} ເມື່ອ ± ບວກ. ເພີ່ມ 6 ໃສ່ 6.
x=\frac{6}{5}
ຫຼຸດເສດສ່ວນ \frac{12}{10} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=\frac{0}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±6}{10} ເມື່ອ ± ເປັນລົບ. ລົບ 6 ອອກຈາກ 6.
x=0
ຫານ 0 ດ້ວຍ 10.
5x^{2}-6x=5\left(x-\frac{6}{5}\right)x
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{6}{5} ເປັນ x_{1} ແລະ 0 ເປັນ x_{2}.
5x^{2}-6x=5\times \frac{5x-6}{5}x
ລົບ \frac{6}{5} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
5x^{2}-6x=\left(5x-6\right)x
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 5 ໃນ 5 ແລະ 5.