Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

400=40x-x^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ 40-x.
40x-x^{2}=400
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
40x-x^{2}-400=0
ລົບ 400 ອອກຈາກທັງສອງຂ້າງ.
-x^{2}+40x-400=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 40 ສຳລັບ b ແລະ -400 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 40.
x=\frac{-40±\sqrt{1600+4\left(-400\right)}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-40±\sqrt{1600-1600}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ -400.
x=\frac{-40±\sqrt{0}}{2\left(-1\right)}
ເພີ່ມ 1600 ໃສ່ -1600.
x=-\frac{40}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=-\frac{40}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=20
ຫານ -40 ດ້ວຍ -2.
400=40x-x^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ 40-x.
40x-x^{2}=400
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
-x^{2}+40x=400
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-x^{2}+40x}{-1}=\frac{400}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{40}{-1}x=\frac{400}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-40x=\frac{400}{-1}
ຫານ 40 ດ້ວຍ -1.
x^{2}-40x=-400
ຫານ 400 ດ້ວຍ -1.
x^{2}-40x+\left(-20\right)^{2}=-400+\left(-20\right)^{2}
ຫານ -40, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -20. ຈາກນັ້ນເພີ່ມຮາກຂອງ -20 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-40x+400=-400+400
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -20.
x^{2}-40x+400=0
ເພີ່ມ -400 ໃສ່ 400.
\left(x-20\right)^{2}=0
ຕົວປະກອບ x^{2}-40x+400. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-20\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-20=0 x-20=0
ເຮັດໃຫ້ງ່າຍ.
x=20 x=20
ເພີ່ມ 20 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=20
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.