Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x, y
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4x-3y=1,x+2y=3
ເພື່ອແກ້ຄູ່ສົມຜົນໃດໜຶ່ງໂດຍໃຊ້ການແທນ, ທຳອິດໃຫ້ແກ້ໜຶ່ງໃນສົມຜົນນັ້ນສຳລັບໜຶ່ງໃນຕົວແປຕ່າງໆກ່ອນ. ຈາກນັ້ນແທນທີ່ຜົນສຳລັບຕົວແປນັ້ນໃນສົມຜົນອື່ນ.
4x-3y=1
ເລືອກໜຶ່ງໃນສົມຜົນ ແລະ ແກ້ມັນສຳລັບ x ໂດຍການແຍກ x ທາງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
4x=3y+1
ເພີ່ມ 3y ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=\frac{1}{4}\left(3y+1\right)
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x=\frac{3}{4}y+\frac{1}{4}
ຄູນ \frac{1}{4} ໃຫ້ກັບ 3y+1.
\frac{3}{4}y+\frac{1}{4}+2y=3
ການແທນ\frac{3y+1}{4} ສຳລັບ x ໃນສົມຜົນອື່ນ, x+2y=3.
\frac{11}{4}y+\frac{1}{4}=3
ເພີ່ມ \frac{3y}{4} ໃສ່ 2y.
\frac{11}{4}y=\frac{11}{4}
ລົບ \frac{1}{4} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
y=1
ຫານທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ \frac{11}{4}, ເຊິ່ງເທົ່າກັບການຄູນທັງສອງຂ້າງດ້ວຍຈຳນວນເລກທີ່ກັບກັນຂອງເສດສ່ວນນັ້ນ.
x=\frac{3+1}{4}
ການແທນ 1 ສຳລັບ y ໃນ x=\frac{3}{4}y+\frac{1}{4}. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ x ໄດ້ໂດຍກົງ.
x=1
ເພີ່ມ \frac{1}{4} ໃສ່ \frac{3}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
x=1,y=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.
4x-3y=1,x+2y=3
ວາງສົມຜົນໃນຮູບແບບມາດຕະຖານ ແລ້ວຈາກນັ້ນໃຊ້ເມທຣິກເພື່ອແກ້ລະບົບສົມຜົນ.
\left(\begin{matrix}4&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
ຂຽນສົມຜົນໃນຮູບແບບເມທຣິກ.
inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}4&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ຄູນຊ້າຍໃສ່ສົມຜົນຕາມເມທຣິກປີ້ນກັບຂອງ \left(\begin{matrix}4&-3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ຜະລິດຕະພັນຂອງເມທຣິກ ແລະ ຄ່າປີ້ນຂອງມັນແມ່ນເມທຣິກການຢືນຢັນ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ຄູນເມທຣິດຢູ່ດ້ານຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\right)}&-\frac{-3}{4\times 2-\left(-3\right)}\\-\frac{1}{4\times 2-\left(-3\right)}&\frac{4}{4\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
ສຳລັບແມ​ຕ​ຣິກ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ແມ​ຕ​ຣິກກົງກັນຂ້າມແມ່ນ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ດັ່ງນັ້ນສົມຜົນເມທຣິກສາມາດຖືກຂຽນຄືນໃໝ່ເປັນບັນຫາສູດຄູນເມທຣິກໄດ້.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{3}{11}\\-\frac{1}{11}&\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
ເຮັດເລກຄະນິດ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}+\frac{3}{11}\times 3\\-\frac{1}{11}+\frac{4}{11}\times 3\end{matrix}\right)
ຄູນເມທຣິກຕ່າງໆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ເຮັດເລກຄະນິດ.
x=1,y=1
ສະກັດອົງປະກອບເມທຣິກ x ແລະ y.
4x-3y=1,x+2y=3
ເພື່ອແກ້ໂດຍການກຳຈັດ, ຄ່າສຳປະສິດຂອງໜຶ່ງໃນຕົວແປຈະຕ້ອງເທົ່າກັນໃນສົມຜົນທັງສອງ ເພື່ອໃຫ້ຕົວແປຈະຍົກເລີກອອກໄປເມື່ອໜຶ່ງສົມຜົນຖືກລົບອອກຈາກສົມຜົນອື່ນ.
4x-3y=1,4x+4\times 2y=4\times 3
ເພື່ອເຮັດໃຫ້ 4x ແລະ x ເທົ່າກັນ, ໃຫ້ຄູນພົດທັງໝົດໃນທັງສອງຂ້າງຂອງສົມຜົນທຳອິດດ້ວຍ 1 ແລະ ພົດທັງໝົດຂອງແຕ່ລະຂ້າງຂອງສົມຜົນທີສອງດ້ວຍ 4.
4x-3y=1,4x+8y=12
ເຮັດໃຫ້ງ່າຍ.
4x-4x-3y-8y=1-12
ລົບ 4x+8y=12 ອອກຈາກ 4x-3y=1 ໂດຍການລົບພົດອອກຈາກແຕ່ລະຂ້າງຂອງເຄື່ອງໝາຍເທົ່າກັບ.
-3y-8y=1-12
ເພີ່ມ 4x ໃສ່ -4x. ຂໍ້ກຳນົດ 4x ແລະ -4x ຍົກເລີກອອກໄປ, ເຮັດໃຫ້ມີສົມຜົນໜຶ່ງທີ່ມີພຽງຕົວແປດຽວທີ່ສາມາດແກ້ໄດ້.
-11y=1-12
ເພີ່ມ -3y ໃສ່ -8y.
-11y=-11
ເພີ່ມ 1 ໃສ່ -12.
y=1
ຫານທັງສອງຂ້າງດ້ວຍ -11.
x+2=3
ການແທນ 1 ສຳລັບ y ໃນ x+2y=3. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ x ໄດ້ໂດຍກົງ.
x=1
ລົບ 2 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=1,y=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.