Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-9 ab=4\left(-9\right)=-36
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 4x^{2}+ax+bx-9. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-36 2,-18 3,-12 4,-9 6,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-12 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -9.
\left(4x^{2}-12x\right)+\left(3x-9\right)
ຂຽນ 4x^{2}-9x-9 ຄືນໃໝ່ເປັນ \left(4x^{2}-12x\right)+\left(3x-9\right).
4x\left(x-3\right)+3\left(x-3\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(4x+3\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=3 x=-\frac{3}{4}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ 4x+3=0.
4x^{2}-9x-9=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, -9 ສຳລັບ b ແລະ -9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-9\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -9.
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-9\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-9\right)±\sqrt{81+144}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -9.
x=\frac{-\left(-9\right)±\sqrt{225}}{2\times 4}
ເພີ່ມ 81 ໃສ່ 144.
x=\frac{-\left(-9\right)±15}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 225.
x=\frac{9±15}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -9 ແມ່ນ 9.
x=\frac{9±15}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{24}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{9±15}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 9 ໃສ່ 15.
x=3
ຫານ 24 ດ້ວຍ 8.
x=-\frac{6}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{9±15}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 15 ອອກຈາກ 9.
x=-\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-6}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=3 x=-\frac{3}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}-9x-9=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
4x^{2}-9x-9-\left(-9\right)=-\left(-9\right)
ເພີ່ມ 9 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
4x^{2}-9x=-\left(-9\right)
ການລົບ -9 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
4x^{2}-9x=9
ລົບ -9 ອອກຈາກ 0.
\frac{4x^{2}-9x}{4}=\frac{9}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}-\frac{9}{4}x=\frac{9}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=\frac{9}{4}+\left(-\frac{9}{8}\right)^{2}
ຫານ -\frac{9}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{9}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{9}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{9}{4}+\frac{81}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{9}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{225}{64}
ເພີ່ມ \frac{9}{4} ໃສ່ \frac{81}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{9}{8}\right)^{2}=\frac{225}{64}
ຕົວປະກອບ x^{2}-\frac{9}{4}x+\frac{81}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{9}{8}=\frac{15}{8} x-\frac{9}{8}=-\frac{15}{8}
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-\frac{3}{4}
ເພີ່ມ \frac{9}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.