ແກ້ສຳລັບ x
x = \frac{\sqrt{7} + 1}{2} \approx 1,822875656
x=\frac{1-\sqrt{7}}{2}\approx -0,822875656
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
4x^{2}-6-4x=0
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
4x^{2}-4x-6=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-6\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, -4 ສຳລັບ b ແລະ -6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-6\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-6\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -6.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\times 4}
ເພີ່ມ 16 ໃສ່ 96.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 112.
x=\frac{4±4\sqrt{7}}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{4±4\sqrt{7}}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{4\sqrt{7}+4}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±4\sqrt{7}}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 4\sqrt{7}.
x=\frac{\sqrt{7}+1}{2}
ຫານ 4+4\sqrt{7} ດ້ວຍ 8.
x=\frac{4-4\sqrt{7}}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±4\sqrt{7}}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 4\sqrt{7} ອອກຈາກ 4.
x=\frac{1-\sqrt{7}}{2}
ຫານ 4-4\sqrt{7} ດ້ວຍ 8.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}-6-4x=0
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
4x^{2}-4x=6
ເພີ່ມ 6 ໃສ່ທັງສອງດ້ານ. ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
\frac{4x^{2}-4x}{4}=\frac{6}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{6}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}-x=\frac{6}{4}
ຫານ -4 ດ້ວຍ 4.
x^{2}-x=\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{6}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
ຫານ -1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-x+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-x+\frac{1}{4}=\frac{7}{4}
ເພີ່ມ \frac{3}{2} ໃສ່ \frac{1}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{4}
ຕົວປະກອບ x^{2}-x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{2}=\frac{\sqrt{7}}{2} x-\frac{1}{2}=-\frac{\sqrt{7}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}