Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4x^{2}-5x-1=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, -5 ສຳລັບ b ແລະ -1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4\left(-1\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25-16\left(-1\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-5\right)±\sqrt{25+16}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -1.
x=\frac{-\left(-5\right)±\sqrt{41}}{2\times 4}
ເພີ່ມ 25 ໃສ່ 16.
x=\frac{5±\sqrt{41}}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±\sqrt{41}}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{\sqrt{41}+5}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±\sqrt{41}}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ \sqrt{41}.
x=\frac{5-\sqrt{41}}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±\sqrt{41}}{8} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{41} ອອກຈາກ 5.
x=\frac{\sqrt{41}+5}{8} x=\frac{5-\sqrt{41}}{8}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}-5x-1=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
4x^{2}-5x-1-\left(-1\right)=-\left(-1\right)
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
4x^{2}-5x=-\left(-1\right)
ການລົບ -1 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
4x^{2}-5x=1
ລົບ -1 ອອກຈາກ 0.
\frac{4x^{2}-5x}{4}=\frac{1}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}-\frac{5}{4}x=\frac{1}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{8}\right)^{2}
ຫານ -\frac{5}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{1}{4}+\frac{25}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{41}{64}
ເພີ່ມ \frac{1}{4} ໃສ່ \frac{25}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{5}{8}\right)^{2}=\frac{41}{64}
ຕົວປະກອບ x^{2}-\frac{5}{4}x+\frac{25}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{8}=\frac{\sqrt{41}}{8} x-\frac{5}{8}=-\frac{\sqrt{41}}{8}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{41}+5}{8} x=\frac{5-\sqrt{41}}{8}
ເພີ່ມ \frac{5}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.