Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(4x-11\right)
ຕົວປະກອບຈາກ x.
4x^{2}-11x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-11\right)±11}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-11\right)^{2}.
x=\frac{11±11}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -11 ແມ່ນ 11.
x=\frac{11±11}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{22}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{11±11}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 11 ໃສ່ 11.
x=\frac{11}{4}
ຫຼຸດເສດສ່ວນ \frac{22}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=\frac{0}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{11±11}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ 11.
x=0
ຫານ 0 ດ້ວຍ 8.
4x^{2}-11x=4\left(x-\frac{11}{4}\right)x
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{11}{4} ເປັນ x_{1} ແລະ 0 ເປັນ x_{2}.
4x^{2}-11x=4\times \frac{4x-11}{4}x
ລົບ \frac{11}{4} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4x^{2}-11x=\left(4x-11\right)x
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.