ແກ້ສຳລັບ x
x=-4
x=-2
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x^{2}+6x+8=0
ຫານທັງສອງຂ້າງດ້ວຍ 4.
a+b=6 ab=1\times 8=8
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx+8. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,8 2,4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 8.
1+8=9 2+4=6
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
ຂຽນ x^{2}+6x+8 ຄືນໃໝ່ເປັນ \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 4 ໃນກຸ່ມທີສອງ.
\left(x+2\right)\left(x+4\right)
ແຍກຄຳທົ່ວໄປ x+2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-2 x=-4
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x+2=0 ແລະ x+4=0.
4x^{2}+24x+32=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 32}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, 24 ສຳລັບ b ແລະ 32 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\times 32}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 24.
x=\frac{-24±\sqrt{576-16\times 32}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-24±\sqrt{576-512}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ 32.
x=\frac{-24±\sqrt{64}}{2\times 4}
ເພີ່ມ 576 ໃສ່ -512.
x=\frac{-24±8}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 64.
x=\frac{-24±8}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=-\frac{16}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-24±8}{8} ເມື່ອ ± ບວກ. ເພີ່ມ -24 ໃສ່ 8.
x=-2
ຫານ -16 ດ້ວຍ 8.
x=-\frac{32}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-24±8}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 8 ອອກຈາກ -24.
x=-4
ຫານ -32 ດ້ວຍ 8.
x=-2 x=-4
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}+24x+32=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
4x^{2}+24x+32-32=-32
ລົບ 32 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
4x^{2}+24x=-32
ການລົບ 32 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{4x^{2}+24x}{4}=-\frac{32}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}+\frac{24}{4}x=-\frac{32}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}+6x=-\frac{32}{4}
ຫານ 24 ດ້ວຍ 4.
x^{2}+6x=-8
ຫານ -32 ດ້ວຍ 4.
x^{2}+6x+3^{2}=-8+3^{2}
ຫານ 6, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 3. ຈາກນັ້ນເພີ່ມຮາກຂອງ 3 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+6x+9=-8+9
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3.
x^{2}+6x+9=1
ເພີ່ມ -8 ໃສ່ 9.
\left(x+3\right)^{2}=1
ຕົວປະກອບ x^{2}+6x+9. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+3=1 x+3=-1
ເຮັດໃຫ້ງ່າຍ.
x=-2 x=-4
ລົບ 3 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}