Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4x^{2}+9+12x=0
ຄຳນວນ \sqrt[3]{729} ແລະ ໄດ້ຮັບ 9.
4x^{2}+12x+9=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=12 ab=4\times 9=36
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 4x^{2}+ax+bx+9. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,36 2,18 3,12 4,9 6,6
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=6 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 12.
\left(4x^{2}+6x\right)+\left(6x+9\right)
ຂຽນ 4x^{2}+12x+9 ຄືນໃໝ່ເປັນ \left(4x^{2}+6x\right)+\left(6x+9\right).
2x\left(2x+3\right)+3\left(2x+3\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(2x+3\right)\left(2x+3\right)
ແຍກຄຳທົ່ວໄປ 2x+3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(2x+3\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=-\frac{3}{2}
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ 2x+3=0.
4x^{2}+9+12x=0
ຄຳນວນ \sqrt[3]{729} ແລະ ໄດ້ຮັບ 9.
4x^{2}+12x+9=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, 12 ສຳລັບ b ແລະ 9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 12.
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-12±\sqrt{144-144}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ 9.
x=\frac{-12±\sqrt{0}}{2\times 4}
ເພີ່ມ 144 ໃສ່ -144.
x=-\frac{12}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=-\frac{12}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-12}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
4x^{2}+9+12x=0
ຄຳນວນ \sqrt[3]{729} ແລະ ໄດ້ຮັບ 9.
4x^{2}+12x=-9
ລົບ 9 ອອກຈາກທັງສອງຂ້າງ. ອັນໃດກໍໄດ້ຫານຈາກສູນໄດ້ຈຳນວນລົບຂອງມັນ.
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}+\frac{12}{4}x=-\frac{9}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}+3x=-\frac{9}{4}
ຫານ 12 ດ້ວຍ 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
ຫານ 3, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{3}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{3}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{3}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+3x+\frac{9}{4}=0
ເພີ່ມ -\frac{9}{4} ໃສ່ \frac{9}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{3}{2}\right)^{2}=0
ຕົວປະກອບ x^{2}+3x+\frac{9}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{3}{2}=0 x+\frac{3}{2}=0
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{3}{2} x=-\frac{3}{2}
ລົບ \frac{3}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=-\frac{3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.