Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=4 ab=4\times 1=4
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4n^{2}+an+bn+1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,4 2,2
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 4.
1+4=5 2+2=4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 4.
\left(4n^{2}+2n\right)+\left(2n+1\right)
ຂຽນ 4n^{2}+4n+1 ຄືນໃໝ່ເປັນ \left(4n^{2}+2n\right)+\left(2n+1\right).
2n\left(2n+1\right)+2n+1
ແຍກ 2n ອອກໃນ 4n^{2}+2n.
\left(2n+1\right)\left(2n+1\right)
ແຍກຄຳທົ່ວໄປ 2n+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(2n+1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(4n^{2}+4n+1)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(4,4,1)=1
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
\sqrt{4n^{2}}=2n
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດນຳ, 4n^{2}.
\left(2n+1\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
4n^{2}+4n+1=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
n=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
n=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
n=\frac{-4±\sqrt{16-16}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
n=\frac{-4±\sqrt{0}}{2\times 4}
ເພີ່ມ 16 ໃສ່ -16.
n=\frac{-4±0}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
n=\frac{-4±0}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
4n^{2}+4n+1=4\left(n-\left(-\frac{1}{2}\right)\right)\left(n-\left(-\frac{1}{2}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{1}{2} ເປັນ x_{1} ແລະ -\frac{1}{2} ເປັນ x_{2}.
4n^{2}+4n+1=4\left(n+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
4n^{2}+4n+1=4\times \frac{2n+1}{2}\left(n+\frac{1}{2}\right)
ເພີ່ມ \frac{1}{2} ໃສ່ n ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4n^{2}+4n+1=4\times \frac{2n+1}{2}\times \frac{2n+1}{2}
ເພີ່ມ \frac{1}{2} ໃສ່ n ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4n^{2}+4n+1=4\times \frac{\left(2n+1\right)\left(2n+1\right)}{2\times 2}
ຄູນ \frac{2n+1}{2} ກັບ \frac{2n+1}{2} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4n^{2}+4n+1=4\times \frac{\left(2n+1\right)\left(2n+1\right)}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
4n^{2}+4n+1=\left(2n+1\right)\left(2n+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.