ຕົວປະກອບ
\left(c-1\right)\left(4c-5\right)
ປະເມີນ
\left(c-1\right)\left(4c-5\right)
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-9 ab=4\times 5=20
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4c^{2}+ac+bc+5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-20 -2,-10 -4,-5
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 20.
-1-20=-21 -2-10=-12 -4-5=-9
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=-4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -9.
\left(4c^{2}-5c\right)+\left(-4c+5\right)
ຂຽນ 4c^{2}-9c+5 ຄືນໃໝ່ເປັນ \left(4c^{2}-5c\right)+\left(-4c+5\right).
c\left(4c-5\right)-\left(4c-5\right)
ຕົວຫານ c ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(4c-5\right)\left(c-1\right)
ແຍກຄຳທົ່ວໄປ 4c-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
4c^{2}-9c+5=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
c=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 5}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
c=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 5}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -9.
c=\frac{-\left(-9\right)±\sqrt{81-16\times 5}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
c=\frac{-\left(-9\right)±\sqrt{81-80}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ 5.
c=\frac{-\left(-9\right)±\sqrt{1}}{2\times 4}
ເພີ່ມ 81 ໃສ່ -80.
c=\frac{-\left(-9\right)±1}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 1.
c=\frac{9±1}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -9 ແມ່ນ 9.
c=\frac{9±1}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
c=\frac{10}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ c=\frac{9±1}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 9 ໃສ່ 1.
c=\frac{5}{4}
ຫຼຸດເສດສ່ວນ \frac{10}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
c=\frac{8}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ c=\frac{9±1}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ 9.
c=1
ຫານ 8 ດ້ວຍ 8.
4c^{2}-9c+5=4\left(c-\frac{5}{4}\right)\left(c-1\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{5}{4} ເປັນ x_{1} ແລະ 1 ເປັນ x_{2}.
4c^{2}-9c+5=4\times \frac{4c-5}{4}\left(c-1\right)
ລົບ \frac{5}{4} ອອກຈາກ c ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4c^{2}-9c+5=\left(4c-5\right)\left(c-1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}