ຕົວປະກອບ
\left(2a-1\right)^{2}
ປະເມີນ
\left(2a-1\right)^{2}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
p+q=-4 pq=4\times 1=4
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4a^{2}+pa+qa+1. ເພື່ອຊອກຫາ p ແລະ q, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-4 -2,-2
ເນື່ອງຈາກ pq ເປັນຄ່າບວກ, p ແລະ q ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ p+q ເປັນຄ່າລົບ, p ແລະ q ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 4.
-1-4=-5 -2-2=-4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
p=-2 q=-2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -4.
\left(4a^{2}-2a\right)+\left(-2a+1\right)
ຂຽນ 4a^{2}-4a+1 ຄືນໃໝ່ເປັນ \left(4a^{2}-2a\right)+\left(-2a+1\right).
2a\left(2a-1\right)-\left(2a-1\right)
ຕົວຫານ 2a ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(2a-1\right)\left(2a-1\right)
ແຍກຄຳທົ່ວໄປ 2a-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(2a-1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(4a^{2}-4a+1)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(4,-4,1)=1
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
\sqrt{4a^{2}}=2a
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດນຳ, 4a^{2}.
\left(2a-1\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
4a^{2}-4a+1=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
a=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
a=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
ເພີ່ມ 16 ໃສ່ -16.
a=\frac{-\left(-4\right)±0}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
a=\frac{4±0}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
a=\frac{4±0}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
4a^{2}-4a+1=4\left(a-\frac{1}{2}\right)\left(a-\frac{1}{2}\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{1}{2} ເປັນ x_{1} ແລະ \frac{1}{2} ເປັນ x_{2}.
4a^{2}-4a+1=4\times \frac{2a-1}{2}\left(a-\frac{1}{2}\right)
ລົບ \frac{1}{2} ອອກຈາກ a ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4a^{2}-4a+1=4\times \frac{2a-1}{2}\times \frac{2a-1}{2}
ລົບ \frac{1}{2} ອອກຈາກ a ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4a^{2}-4a+1=4\times \frac{\left(2a-1\right)\left(2a-1\right)}{2\times 2}
ຄູນ \frac{2a-1}{2} ກັບ \frac{2a-1}{2} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4a^{2}-4a+1=4\times \frac{\left(2a-1\right)\left(2a-1\right)}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
4a^{2}-4a+1=\left(2a-1\right)\left(2a-1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}