Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+9 ກັບ x ແມ່ນ x\left(x+9\right). ຄູນ \frac{1}{x+9} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{1}{x} ໃຫ້ກັບ \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເນື່ອງຈາກ \frac{x}{x\left(x+9\right)} ແລະ \frac{x+9}{x\left(x+9\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຄູນໃນເສດສ່ວນ x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມຂໍ້ກຳນົດໃນ x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ສະແດງ 4\times \frac{-9}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+9 ກັບ x ແມ່ນ x\left(x+9\right). ຄູນ \frac{1}{x+9} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{1}{x} ໃຫ້ກັບ \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເນື່ອງຈາກ \frac{x}{x\left(x+9\right)} ແລະ \frac{x+9}{x\left(x+9\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຄູນໃນເສດສ່ວນ x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມຂໍ້ກຳນົດໃນ x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ສະແດງ 4\times \frac{-9}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມ \frac{4\left(-9\right)}{x\left(x+9\right)} ແລະ \frac{4\left(-9\right)}{x\left(x+9\right)} ເພື່ອຮັບ 2\times \frac{4\left(-9\right)}{x\left(x+9\right)}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x+9\right)^{2} ກັບ x^{2} ແມ່ນ x^{2}\left(x+9\right)^{2}. ຄູນ \frac{-1}{\left(x+9\right)^{2}} ໃຫ້ກັບ \frac{x^{2}}{x^{2}}. ຄູນ \frac{1}{x^{2}} ໃຫ້ກັບ \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
ເນື່ອງຈາກ \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} ແລະ \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
ຄູນໃນເສດສ່ວນ -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ສະແດງ 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} ເປັນໜຶ່ງເສດສ່ວນ.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ຄູນ 4 ກັບ -9 ເພື່ອໃຫ້ໄດ້ -36.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ສະແດງ 2\times \frac{-36}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 4 ດ້ວຍ 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
ສະແດງ \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x ເປັນໜຶ່ງເສດສ່ວນ.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
ຍົກເລີກ x ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x\left(x+9\right) ກັບ x\left(x+9\right)^{2} ແມ່ນ x\left(x+9\right)^{2}. ຄູນ \frac{2\left(-36\right)}{x\left(x+9\right)} ໃຫ້ກັບ \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
ເນື່ອງຈາກ \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} ແລະ \frac{72x+324}{x\left(x+9\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
ຄູນໃນເສດສ່ວນ 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
ຂະຫຍາຍ x\left(x+9\right)^{2}.
4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+9 ກັບ x ແມ່ນ x\left(x+9\right). ຄູນ \frac{1}{x+9} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{1}{x} ໃຫ້ກັບ \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເນື່ອງຈາກ \frac{x}{x\left(x+9\right)} ແລະ \frac{x+9}{x\left(x+9\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຄູນໃນເສດສ່ວນ x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມຂໍ້ກຳນົດໃນ x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ສະແດງ 4\times \frac{-9}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+9 ກັບ x ແມ່ນ x\left(x+9\right). ຄູນ \frac{1}{x+9} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{1}{x} ໃຫ້ກັບ \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ເນື່ອງຈາກ \frac{x}{x\left(x+9\right)} ແລະ \frac{x+9}{x\left(x+9\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຄູນໃນເສດສ່ວນ x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມຂໍ້ກຳນົດໃນ x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ສະແດງ 4\times \frac{-9}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
ຮວມ \frac{4\left(-9\right)}{x\left(x+9\right)} ແລະ \frac{4\left(-9\right)}{x\left(x+9\right)} ເພື່ອຮັບ 2\times \frac{4\left(-9\right)}{x\left(x+9\right)}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x+9\right)^{2} ກັບ x^{2} ແມ່ນ x^{2}\left(x+9\right)^{2}. ຄູນ \frac{-1}{\left(x+9\right)^{2}} ໃຫ້ກັບ \frac{x^{2}}{x^{2}}. ຄູນ \frac{1}{x^{2}} ໃຫ້ກັບ \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
ເນື່ອງຈາກ \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} ແລະ \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
ຄູນໃນເສດສ່ວນ -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ສະແດງ 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} ເປັນໜຶ່ງເສດສ່ວນ.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ຄູນ 4 ກັບ -9 ເພື່ອໃຫ້ໄດ້ -36.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
ສະແດງ 2\times \frac{-36}{x\left(x+9\right)} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 4 ດ້ວຍ 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
ສະແດງ \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x ເປັນໜຶ່ງເສດສ່ວນ.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
ຍົກເລີກ x ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x\left(x+9\right) ກັບ x\left(x+9\right)^{2} ແມ່ນ x\left(x+9\right)^{2}. ຄູນ \frac{2\left(-36\right)}{x\left(x+9\right)} ໃຫ້ກັບ \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
ເນື່ອງຈາກ \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} ແລະ \frac{72x+324}{x\left(x+9\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
ຄູນໃນເສດສ່ວນ 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
ຂະຫຍາຍ x\left(x+9\right)^{2}.