Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-1 ab=4\left(-3\right)=-12
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-4 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(4x^{2}-4x\right)+\left(3x-3\right)
ຂຽນ 4x^{2}-x-3 ຄືນໃໝ່ເປັນ \left(4x^{2}-4x\right)+\left(3x-3\right).
4x\left(x-1\right)+3\left(x-1\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(4x+3\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
4x^{2}-x-3=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -3.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
ເພີ່ມ 1 ໃສ່ 48.
x=\frac{-\left(-1\right)±7}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{1±7}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±7}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{8}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±7}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 7.
x=1
ຫານ 8 ດ້ວຍ 8.
x=-\frac{6}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±7}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 1.
x=-\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-6}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
4x^{2}-x-3=4\left(x-1\right)\left(x-\left(-\frac{3}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 1 ເປັນ x_{1} ແລະ -\frac{3}{4} ເປັນ x_{2}.
4x^{2}-x-3=4\left(x-1\right)\left(x+\frac{3}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
4x^{2}-x-3=4\left(x-1\right)\times \frac{4x+3}{4}
ເພີ່ມ \frac{3}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4x^{2}-x-3=\left(x-1\right)\left(4x+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.