Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-7 ab=4\left(-2\right)=-8
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4x^{2}+ax+bx-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-8 2,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -8.
1-8=-7 2-4=-2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-8 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -7.
\left(4x^{2}-8x\right)+\left(x-2\right)
ຂຽນ 4x^{2}-7x-2 ຄືນໃໝ່ເປັນ \left(4x^{2}-8x\right)+\left(x-2\right).
4x\left(x-2\right)+x-2
ແຍກ 4x ອອກໃນ 4x^{2}-8x.
\left(x-2\right)\left(4x+1\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
4x^{2}-7x-2=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-2\right)}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-2\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -7.
x=\frac{-\left(-7\right)±\sqrt{49-16\left(-2\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -2.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\times 4}
ເພີ່ມ 49 ໃສ່ 32.
x=\frac{-\left(-7\right)±9}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 81.
x=\frac{7±9}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -7 ແມ່ນ 7.
x=\frac{7±9}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{16}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±9}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 7 ໃສ່ 9.
x=2
ຫານ 16 ດ້ວຍ 8.
x=-\frac{2}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±9}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 9 ອອກຈາກ 7.
x=-\frac{1}{4}
ຫຼຸດເສດສ່ວນ \frac{-2}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
4x^{2}-7x-2=4\left(x-2\right)\left(x-\left(-\frac{1}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 2 ເປັນ x_{1} ແລະ -\frac{1}{4} ເປັນ x_{2}.
4x^{2}-7x-2=4\left(x-2\right)\left(x+\frac{1}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
4x^{2}-7x-2=4\left(x-2\right)\times \frac{4x+1}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4x^{2}-7x-2=\left(x-2\right)\left(4x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.