Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-11 ab=4\left(-3\right)=-12
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 4x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-12 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -11.
\left(4x^{2}-12x\right)+\left(x-3\right)
ຂຽນ 4x^{2}-11x-3 ຄືນໃໝ່ເປັນ \left(4x^{2}-12x\right)+\left(x-3\right).
4x\left(x-3\right)+x-3
ແຍກ 4x ອອກໃນ 4x^{2}-12x.
\left(x-3\right)\left(4x+1\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
4x^{2}-11x-3=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 4\left(-3\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -11.
x=\frac{-\left(-11\right)±\sqrt{121-16\left(-3\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -3.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 4}
ເພີ່ມ 121 ໃສ່ 48.
x=\frac{-\left(-11\right)±13}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
x=\frac{11±13}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -11 ແມ່ນ 11.
x=\frac{11±13}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{24}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{11±13}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 11 ໃສ່ 13.
x=3
ຫານ 24 ດ້ວຍ 8.
x=-\frac{2}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{11±13}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ 11.
x=-\frac{1}{4}
ຫຼຸດເສດສ່ວນ \frac{-2}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
4x^{2}-11x-3=4\left(x-3\right)\left(x-\left(-\frac{1}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 3 ເປັນ x_{1} ແລະ -\frac{1}{4} ເປັນ x_{2}.
4x^{2}-11x-3=4\left(x-3\right)\left(x+\frac{1}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
4x^{2}-11x-3=4\left(x-3\right)\times \frac{4x+1}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
4x^{2}-11x-3=\left(x-3\right)\left(4x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 4 ແລະ 4.