Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4x^{2}+8x-4x=8
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+4x=8
ຮວມ 8x ແລະ -4x ເພື່ອຮັບ 4x.
4x^{2}+4x-8=0
ລົບ 8 ອອກຈາກທັງສອງຂ້າງ.
x^{2}+x-2=0
ຫານທັງສອງຂ້າງດ້ວຍ 4.
a+b=1 ab=1\left(-2\right)=-2
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=-1 b=2
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x^{2}-x\right)+\left(2x-2\right)
ຂຽນ x^{2}+x-2 ຄືນໃໝ່ເປັນ \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(x+2\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=1 x=-2
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-1=0 ແລະ x+2=0.
4x^{2}+8x-4x=8
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+4x=8
ຮວມ 8x ແລະ -4x ເພື່ອຮັບ 4x.
4x^{2}+4x-8=0
ລົບ 8 ອອກຈາກທັງສອງຂ້າງ.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, 4 ສຳລັບ b ແລະ -8 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -8.
x=\frac{-4±\sqrt{144}}{2\times 4}
ເພີ່ມ 16 ໃສ່ 128.
x=\frac{-4±12}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 144.
x=\frac{-4±12}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{8}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±12}{8} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 12.
x=1
ຫານ 8 ດ້ວຍ 8.
x=-\frac{16}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±12}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 12 ອອກຈາກ -4.
x=-2
ຫານ -16 ດ້ວຍ 8.
x=1 x=-2
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}+8x-4x=8
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+4x=8
ຮວມ 8x ແລະ -4x ເພື່ອຮັບ 4x.
\frac{4x^{2}+4x}{4}=\frac{8}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}+\frac{4}{4}x=\frac{8}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}+x=\frac{8}{4}
ຫານ 4 ດ້ວຍ 4.
x^{2}+x=2
ຫານ 8 ດ້ວຍ 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
ເພີ່ມ 2 ໃສ່ \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
ຕົວປະກອບ x^{2}+x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=-2
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.