Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4x^{2}+4x-2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-2\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, 4 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-2\right)}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
x=\frac{-4±\sqrt{16-16\left(-2\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-4±\sqrt{16+32}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -2.
x=\frac{-4±\sqrt{48}}{2\times 4}
ເພີ່ມ 16 ໃສ່ 32.
x=\frac{-4±4\sqrt{3}}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 48.
x=\frac{-4±4\sqrt{3}}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{4\sqrt{3}-4}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±4\sqrt{3}}{8} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 4\sqrt{3}.
x=\frac{\sqrt{3}-1}{2}
ຫານ -4+4\sqrt{3} ດ້ວຍ 8.
x=\frac{-4\sqrt{3}-4}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±4\sqrt{3}}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 4\sqrt{3} ອອກຈາກ -4.
x=\frac{-\sqrt{3}-1}{2}
ຫານ -4-4\sqrt{3} ດ້ວຍ 8.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}+4x-2=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
4x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
4x^{2}+4x=-\left(-2\right)
ການລົບ -2 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
4x^{2}+4x=2
ລົບ -2 ອອກຈາກ 0.
\frac{4x^{2}+4x}{4}=\frac{2}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}+\frac{4}{4}x=\frac{2}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}+x=\frac{2}{4}
ຫານ 4 ດ້ວຍ 4.
x^{2}+x=\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{2}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+x+\frac{1}{4}=\frac{3}{4}
ເພີ່ມ \frac{1}{2} ໃສ່ \frac{1}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}
ຕົວປະກອບ x^{2}+x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{2}=\frac{\sqrt{3}}{2} x+\frac{1}{2}=-\frac{\sqrt{3}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.