ແກ້ສຳລັບ a
a=\frac{5+\sqrt{7}i}{8}\approx 0,625+0,330718914i
a=\frac{-\sqrt{7}i+5}{8}\approx 0,625-0,330718914i
ແບ່ງປັນ
ສໍາເນົາຄລິບ
4a^{2}-5a+2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 2}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, -5 ສຳລັບ b ແລະ 2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 4\times 2}}{2\times 4}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
a=\frac{-\left(-5\right)±\sqrt{25-16\times 2}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
a=\frac{-\left(-5\right)±\sqrt{25-32}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ 2.
a=\frac{-\left(-5\right)±\sqrt{-7}}{2\times 4}
ເພີ່ມ 25 ໃສ່ -32.
a=\frac{-\left(-5\right)±\sqrt{7}i}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ -7.
a=\frac{5±\sqrt{7}i}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
a=\frac{5±\sqrt{7}i}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
a=\frac{5+\sqrt{7}i}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{5±\sqrt{7}i}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ i\sqrt{7}.
a=\frac{-\sqrt{7}i+5}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{5±\sqrt{7}i}{8} ເມື່ອ ± ເປັນລົບ. ລົບ i\sqrt{7} ອອກຈາກ 5.
a=\frac{5+\sqrt{7}i}{8} a=\frac{-\sqrt{7}i+5}{8}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4a^{2}-5a+2=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
4a^{2}-5a+2-2=-2
ລົບ 2 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
4a^{2}-5a=-2
ການລົບ 2 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{4a^{2}-5a}{4}=-\frac{2}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
a^{2}-\frac{5}{4}a=-\frac{2}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
a^{2}-\frac{5}{4}a=-\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{-2}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
a^{2}-\frac{5}{4}a+\left(-\frac{5}{8}\right)^{2}=-\frac{1}{2}+\left(-\frac{5}{8}\right)^{2}
ຫານ -\frac{5}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
a^{2}-\frac{5}{4}a+\frac{25}{64}=-\frac{1}{2}+\frac{25}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
a^{2}-\frac{5}{4}a+\frac{25}{64}=-\frac{7}{64}
ເພີ່ມ -\frac{1}{2} ໃສ່ \frac{25}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(a-\frac{5}{8}\right)^{2}=-\frac{7}{64}
ຕົວປະກອບ a^{2}-\frac{5}{4}a+\frac{25}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(a-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{7}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
a-\frac{5}{8}=\frac{\sqrt{7}i}{8} a-\frac{5}{8}=-\frac{\sqrt{7}i}{8}
ເຮັດໃຫ້ງ່າຍ.
a=\frac{5+\sqrt{7}i}{8} a=\frac{-\sqrt{7}i+5}{8}
ເພີ່ມ \frac{5}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}