Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=60 ab=36\times 25=900
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 36x^{2}+ax+bx+25. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,900 2,450 3,300 4,225 5,180 6,150 9,100 10,90 12,75 15,60 18,50 20,45 25,36 30,30
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 900.
1+900=901 2+450=452 3+300=303 4+225=229 5+180=185 6+150=156 9+100=109 10+90=100 12+75=87 15+60=75 18+50=68 20+45=65 25+36=61 30+30=60
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=30 b=30
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 60.
\left(36x^{2}+30x\right)+\left(30x+25\right)
ຂຽນ 36x^{2}+60x+25 ຄືນໃໝ່ເປັນ \left(36x^{2}+30x\right)+\left(30x+25\right).
6x\left(6x+5\right)+5\left(6x+5\right)
ຕົວຫານ 6x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(6x+5\right)\left(6x+5\right)
ແຍກຄຳທົ່ວໄປ 6x+5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(6x+5\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(36x^{2}+60x+25)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(36,60,25)=1
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
\sqrt{36x^{2}}=6x
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດນຳ, 36x^{2}.
\sqrt{25}=5
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 25.
\left(6x+5\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
36x^{2}+60x+25=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-60±\sqrt{60^{2}-4\times 36\times 25}}{2\times 36}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-60±\sqrt{3600-4\times 36\times 25}}{2\times 36}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 60.
x=\frac{-60±\sqrt{3600-144\times 25}}{2\times 36}
ຄູນ -4 ໃຫ້ກັບ 36.
x=\frac{-60±\sqrt{3600-3600}}{2\times 36}
ຄູນ -144 ໃຫ້ກັບ 25.
x=\frac{-60±\sqrt{0}}{2\times 36}
ເພີ່ມ 3600 ໃສ່ -3600.
x=\frac{-60±0}{2\times 36}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{-60±0}{72}
ຄູນ 2 ໃຫ້ກັບ 36.
36x^{2}+60x+25=36\left(x-\left(-\frac{5}{6}\right)\right)\left(x-\left(-\frac{5}{6}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{5}{6} ເປັນ x_{1} ແລະ -\frac{5}{6} ເປັນ x_{2}.
36x^{2}+60x+25=36\left(x+\frac{5}{6}\right)\left(x+\frac{5}{6}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
36x^{2}+60x+25=36\times \frac{6x+5}{6}\left(x+\frac{5}{6}\right)
ເພີ່ມ \frac{5}{6} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
36x^{2}+60x+25=36\times \frac{6x+5}{6}\times \frac{6x+5}{6}
ເພີ່ມ \frac{5}{6} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
36x^{2}+60x+25=36\times \frac{\left(6x+5\right)\left(6x+5\right)}{6\times 6}
ຄູນ \frac{6x+5}{6} ກັບ \frac{6x+5}{6} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
36x^{2}+60x+25=36\times \frac{\left(6x+5\right)\left(6x+5\right)}{36}
ຄູນ 6 ໃຫ້ກັບ 6.
36x^{2}+60x+25=\left(6x+5\right)\left(6x+5\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 36 ໃນ 36 ແລະ 36.