Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=5 ab=3\left(-2\right)=-6
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 3y^{2}+ay+by-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,6 -2,3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
-1+6=5 -2+3=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-1 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(3y^{2}-y\right)+\left(6y-2\right)
ຂຽນ 3y^{2}+5y-2 ຄືນໃໝ່ເປັນ \left(3y^{2}-y\right)+\left(6y-2\right).
y\left(3y-1\right)+2\left(3y-1\right)
ຕົວຫານ y ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(3y-1\right)\left(y+2\right)
ແຍກຄຳທົ່ວໄປ 3y-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
3y^{2}+5y-2=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
y=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
y=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
y=\frac{-5±\sqrt{25+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
y=\frac{-5±\sqrt{49}}{2\times 3}
ເພີ່ມ 25 ໃສ່ 24.
y=\frac{-5±7}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
y=\frac{-5±7}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
y=\frac{2}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-5±7}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 7.
y=\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{2}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
y=-\frac{12}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-5±7}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ -5.
y=-2
ຫານ -12 ດ້ວຍ 6.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y-\left(-2\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{1}{3} ເປັນ x_{1} ແລະ -2 ເປັນ x_{2}.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y+2\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
3y^{2}+5y-2=3\times \frac{3y-1}{3}\left(y+2\right)
ລົບ \frac{1}{3} ອອກຈາກ y ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
3y^{2}+5y-2=\left(3y-1\right)\left(y+2\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 3 ໃນ 3 ແລະ 3.