Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}-3x=2-2x
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3x ດ້ວຍ x-1.
3x^{2}-3x-2=-2x
ລົບ 2 ອອກຈາກທັງສອງຂ້າງ.
3x^{2}-3x-2+2x=0
ເພີ່ມ 2x ໃສ່ທັງສອງດ້ານ.
3x^{2}-x-2=0
ຮວມ -3x ແລະ 2x ເພື່ອຮັບ -x.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -1 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
ເພີ່ມ 1 ໃສ່ 24.
x=\frac{-\left(-1\right)±5}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 25.
x=\frac{1±5}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±5}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{6}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±5}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 5.
x=1
ຫານ 6 ດ້ວຍ 6.
x=-\frac{4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±5}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ 1.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=1 x=-\frac{2}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}-3x=2-2x
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3x ດ້ວຍ x-1.
3x^{2}-3x+2x=2
ເພີ່ມ 2x ໃສ່ທັງສອງດ້ານ.
3x^{2}-x=2
ຮວມ -3x ແລະ 2x ເພື່ອຮັບ -x.
\frac{3x^{2}-x}{3}=\frac{2}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
ຫານ -\frac{1}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{6}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{6} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{6} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
ເພີ່ມ \frac{2}{3} ໃສ່ \frac{1}{36} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
ຕົວປະກອບ x^{2}-\frac{1}{3}x+\frac{1}{36}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=-\frac{2}{3}
ເພີ່ມ \frac{1}{6} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.