Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3\left(x^{2}-3x+4\right)
ຕົວປະກອບຈາກ 3. ພະຫຸນາມ x^{2}-3x+4 ບໍ່ແມ່ນປັດໃຈເນື່ອງຈາກມັນເປັນໂດຍບໍ່ມີຮາກເຫດຜົນໃດໆ.
3x^{2}-9x+12=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 12}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 12}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 12}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-9\right)±\sqrt{81-144}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ 12.
x=\frac{-\left(-9\right)±\sqrt{-63}}{2\times 3}
ເພີ່ມ 81 ໃສ່ -144.
3x^{2}-9x+12
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ. ບໍ່ສາມາດຫານສົມຜົນສອງຊັ້ນແບບພະຫຸນາມໄດ້.