Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}-7x-6+3x=-2
ເພີ່ມ 3x ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x-6=-2
ຮວມ -7x ແລະ 3x ເພື່ອຮັບ -4x.
3x^{2}-4x-6+2=0
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x-4=0
ເພີ່ມ -6 ແລະ 2 ເພື່ອໃຫ້ໄດ້ -4.
a+b=-4 ab=3\left(-4\right)=-12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx-4. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -4.
\left(3x^{2}-6x\right)+\left(2x-4\right)
ຂຽນ 3x^{2}-4x-4 ຄືນໃໝ່ເປັນ \left(3x^{2}-6x\right)+\left(2x-4\right).
3x\left(x-2\right)+2\left(x-2\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-2\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=2 x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-2=0 ແລະ 3x+2=0.
3x^{2}-7x-6+3x=-2
ເພີ່ມ 3x ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x-6=-2
ຮວມ -7x ແລະ 3x ເພື່ອຮັບ -4x.
3x^{2}-4x-6+2=0
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x-4=0
ເພີ່ມ -6 ແລະ 2 ເພື່ອໃຫ້ໄດ້ -4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -4 ສຳລັບ b ແລະ -4 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-4\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -4.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 3}
ເພີ່ມ 16 ໃສ່ 48.
x=\frac{-\left(-4\right)±8}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 64.
x=\frac{4±8}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{4±8}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{12}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±8}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 8.
x=2
ຫານ 12 ດ້ວຍ 6.
x=-\frac{4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±8}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 8 ອອກຈາກ 4.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=2 x=-\frac{2}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}-7x-6+3x=-2
ເພີ່ມ 3x ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x-6=-2
ຮວມ -7x ແລະ 3x ເພື່ອຮັບ -4x.
3x^{2}-4x=-2+6
ເພີ່ມ 6 ໃສ່ທັງສອງດ້ານ.
3x^{2}-4x=4
ເພີ່ມ -2 ແລະ 6 ເພື່ອໃຫ້ໄດ້ 4.
\frac{3x^{2}-4x}{3}=\frac{4}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{4}{3}x=\frac{4}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
ຫານ -\frac{4}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{2}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{2}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{2}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
ເພີ່ມ \frac{4}{3} ໃສ່ \frac{4}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
ຕົວປະກອບ x^{2}-\frac{4}{3}x+\frac{4}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
ເຮັດໃຫ້ງ່າຍ.
x=2 x=-\frac{2}{3}
ເພີ່ມ \frac{2}{3} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.