Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}-6-7x=0
ລົບ 7x ອອກຈາກທັງສອງຂ້າງ.
3x^{2}-7x-6=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=-7 ab=3\left(-6\right)=-18
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-18 2,-9 3,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -18.
1-18=-17 2-9=-7 3-6=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-9 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -7.
\left(3x^{2}-9x\right)+\left(2x-6\right)
ຂຽນ 3x^{2}-7x-6 ຄືນໃໝ່ເປັນ \left(3x^{2}-9x\right)+\left(2x-6\right).
3x\left(x-3\right)+2\left(x-3\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=3 x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ 3x+2=0.
3x^{2}-6-7x=0
ລົບ 7x ອອກຈາກທັງສອງຂ້າງ.
3x^{2}-7x-6=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -7 ສຳລັບ b ແລະ -6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\left(-6\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -7.
x=\frac{-\left(-7\right)±\sqrt{49-12\left(-6\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -6.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 3}
ເພີ່ມ 49 ໃສ່ 72.
x=\frac{-\left(-7\right)±11}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 121.
x=\frac{7±11}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -7 ແມ່ນ 7.
x=\frac{7±11}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{18}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±11}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 7 ໃສ່ 11.
x=3
ຫານ 18 ດ້ວຍ 6.
x=-\frac{4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±11}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ 7.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=3 x=-\frac{2}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}-6-7x=0
ລົບ 7x ອອກຈາກທັງສອງຂ້າງ.
3x^{2}-7x=6
ເພີ່ມ 6 ໃສ່ທັງສອງດ້ານ. ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
\frac{3x^{2}-7x}{3}=\frac{6}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{7}{3}x=\frac{6}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{7}{3}x=2
ຫານ 6 ດ້ວຍ 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=2+\left(-\frac{7}{6}\right)^{2}
ຫານ -\frac{7}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{7}{6}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{7}{6} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{7}{3}x+\frac{49}{36}=2+\frac{49}{36}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{7}{6} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{121}{36}
ເພີ່ມ 2 ໃສ່ \frac{49}{36}.
\left(x-\frac{7}{6}\right)^{2}=\frac{121}{36}
ຕົວປະກອບ x^{2}-\frac{7}{3}x+\frac{49}{36}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{7}{6}=\frac{11}{6} x-\frac{7}{6}=-\frac{11}{6}
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-\frac{2}{3}
ເພີ່ມ \frac{7}{6} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.