Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}=4x+2
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 2 ດ້ວຍ 2x+1.
3x^{2}-4x=2
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
3x^{2}-4x-2=0
ລົບ 2 ອອກຈາກທັງສອງຂ້າງ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -4 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-2\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-4\right)±\sqrt{16+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
x=\frac{-\left(-4\right)±\sqrt{40}}{2\times 3}
ເພີ່ມ 16 ໃສ່ 24.
x=\frac{-\left(-4\right)±2\sqrt{10}}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 40.
x=\frac{4±2\sqrt{10}}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{4±2\sqrt{10}}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{2\sqrt{10}+4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±2\sqrt{10}}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 2\sqrt{10}.
x=\frac{\sqrt{10}+2}{3}
ຫານ 4+2\sqrt{10} ດ້ວຍ 6.
x=\frac{4-2\sqrt{10}}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±2\sqrt{10}}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 2\sqrt{10} ອອກຈາກ 4.
x=\frac{2-\sqrt{10}}{3}
ຫານ 4-2\sqrt{10} ດ້ວຍ 6.
x=\frac{\sqrt{10}+2}{3} x=\frac{2-\sqrt{10}}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}=4x+2
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 2 ດ້ວຍ 2x+1.
3x^{2}-4x=2
ລົບ 4x ອອກຈາກທັງສອງຂ້າງ.
\frac{3x^{2}-4x}{3}=\frac{2}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{4}{3}x=\frac{2}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{2}{3}+\left(-\frac{2}{3}\right)^{2}
ຫານ -\frac{4}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{2}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{2}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{2}{3}+\frac{4}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{2}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{10}{9}
ເພີ່ມ \frac{2}{3} ໃສ່ \frac{4}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{2}{3}\right)^{2}=\frac{10}{9}
ຕົວປະກອບ x^{2}-\frac{4}{3}x+\frac{4}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{2}{3}=\frac{\sqrt{10}}{3} x-\frac{2}{3}=-\frac{\sqrt{10}}{3}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{10}+2}{3} x=\frac{2-\sqrt{10}}{3}
ເພີ່ມ \frac{2}{3} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.