ຕົວປະກອບ
\left(3x-2\right)\left(x+3\right)
ປະເມີນ
\left(3x-2\right)\left(x+3\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=7 ab=3\left(-6\right)=-18
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 3x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,18 -2,9 -3,6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -18.
-1+18=17 -2+9=7 -3+6=3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-2 b=9
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(3x^{2}-2x\right)+\left(9x-6\right)
ຂຽນ 3x^{2}+7x-6 ຄືນໃໝ່ເປັນ \left(3x^{2}-2x\right)+\left(9x-6\right).
x\left(3x-2\right)+3\left(3x-2\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(3x-2\right)\left(x+3\right)
ແຍກຄຳທົ່ວໄປ 3x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
3x^{2}+7x-6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-6\right)}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{49-4\times 3\left(-6\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49-12\left(-6\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-7±\sqrt{49+72}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -6.
x=\frac{-7±\sqrt{121}}{2\times 3}
ເພີ່ມ 49 ໃສ່ 72.
x=\frac{-7±11}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 121.
x=\frac{-7±11}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±11}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 11.
x=\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{18}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±11}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ -7.
x=-3
ຫານ -18 ດ້ວຍ 6.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x-\left(-3\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{2}{3} ເປັນ x_{1} ແລະ -3 ເປັນ x_{2}.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x+3\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
3x^{2}+7x-6=3\times \frac{3x-2}{3}\left(x+3\right)
ລົບ \frac{2}{3} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
3x^{2}+7x-6=\left(3x-2\right)\left(x+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 3 ໃນ 3 ແລະ 3.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}