Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=7 ab=3\times 4=12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx+4. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,12 2,6 3,4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 12.
1+12=13 2+6=8 3+4=7
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=3 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(3x^{2}+3x\right)+\left(4x+4\right)
ຂຽນ 3x^{2}+7x+4 ຄືນໃໝ່ເປັນ \left(3x^{2}+3x\right)+\left(4x+4\right).
3x\left(x+1\right)+4\left(x+1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 4 ໃນກຸ່ມທີສອງ.
\left(x+1\right)\left(3x+4\right)
ແຍກຄຳທົ່ວໄປ x+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-1 x=-\frac{4}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x+1=0 ແລະ 3x+4=0.
3x^{2}+7x+4=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 4}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, 7 ສຳລັບ b ແລະ 4 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 3\times 4}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49-12\times 4}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-7±\sqrt{49-48}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ 4.
x=\frac{-7±\sqrt{1}}{2\times 3}
ເພີ່ມ 49 ໃສ່ -48.
x=\frac{-7±1}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 1.
x=\frac{-7±1}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=-\frac{6}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±1}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 1.
x=-1
ຫານ -6 ດ້ວຍ 6.
x=-\frac{8}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±1}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -7.
x=-\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{-8}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-1 x=-\frac{4}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}+7x+4=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
3x^{2}+7x+4-4=-4
ລົບ 4 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
3x^{2}+7x=-4
ການລົບ 4 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{3x^{2}+7x}{3}=-\frac{4}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}+\frac{7}{3}x=-\frac{4}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(\frac{7}{6}\right)^{2}
ຫານ \frac{7}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{7}{6}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{7}{6} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{7}{6} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{1}{36}
ເພີ່ມ -\frac{4}{3} ໃສ່ \frac{49}{36} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{7}{6}\right)^{2}=\frac{1}{36}
ຕົວປະກອບ x^{2}+\frac{7}{3}x+\frac{49}{36}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{7}{6}=\frac{1}{6} x+\frac{7}{6}=-\frac{1}{6}
ເຮັດໃຫ້ງ່າຍ.
x=-1 x=-\frac{4}{3}
ລົບ \frac{7}{6} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.