Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}+3x-2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-3±\sqrt{3^{2}-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, 3 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3.
x=\frac{-3±\sqrt{9-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-3±\sqrt{9+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
x=\frac{-3±\sqrt{33}}{2\times 3}
ເພີ່ມ 9 ໃສ່ 24.
x=\frac{-3±\sqrt{33}}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{\sqrt{33}-3}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-3±\sqrt{33}}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -3 ໃສ່ \sqrt{33}.
x=\frac{\sqrt{33}}{6}-\frac{1}{2}
ຫານ -3+\sqrt{33} ດ້ວຍ 6.
x=\frac{-\sqrt{33}-3}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-3±\sqrt{33}}{6} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{33} ອອກຈາກ -3.
x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
ຫານ -3-\sqrt{33} ດ້ວຍ 6.
x=\frac{\sqrt{33}}{6}-\frac{1}{2} x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}+3x-2=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
3x^{2}+3x-2-\left(-2\right)=-\left(-2\right)
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
3x^{2}+3x=-\left(-2\right)
ການລົບ -2 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
3x^{2}+3x=2
ລົບ -2 ອອກຈາກ 0.
\frac{3x^{2}+3x}{3}=\frac{2}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}+\frac{3}{3}x=\frac{2}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}+x=\frac{2}{3}
ຫານ 3 ດ້ວຍ 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{2}{3}+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+x+\frac{1}{4}=\frac{2}{3}+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+x+\frac{1}{4}=\frac{11}{12}
ເພີ່ມ \frac{2}{3} ໃສ່ \frac{1}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{1}{2}\right)^{2}=\frac{11}{12}
ຕົວປະກອບ x^{2}+x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{2}=\frac{\sqrt{33}}{6} x+\frac{1}{2}=-\frac{\sqrt{33}}{6}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{33}}{6}-\frac{1}{2} x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.