ແກ້ສຳລັບ x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1,333333333
x=-2
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=10 ab=3\times 8=24
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx+8. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,24 2,12 3,8 4,6
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 24.
1+24=25 2+12=14 3+8=11 4+6=10
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=4 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 10.
\left(3x^{2}+4x\right)+\left(6x+8\right)
ຂຽນ 3x^{2}+10x+8 ຄືນໃໝ່ເປັນ \left(3x^{2}+4x\right)+\left(6x+8\right).
x\left(3x+4\right)+2\left(3x+4\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(3x+4\right)\left(x+2\right)
ແຍກຄຳທົ່ວໄປ 3x+4 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-\frac{4}{3} x=-2
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 3x+4=0 ແລະ x+2=0.
3x^{2}+10x+8=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-10±\sqrt{10^{2}-4\times 3\times 8}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, 10 ສຳລັບ b ແລະ 8 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 3\times 8}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 10.
x=\frac{-10±\sqrt{100-12\times 8}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-10±\sqrt{100-96}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ 8.
x=\frac{-10±\sqrt{4}}{2\times 3}
ເພີ່ມ 100 ໃສ່ -96.
x=\frac{-10±2}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 4.
x=\frac{-10±2}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=-\frac{8}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±2}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -10 ໃສ່ 2.
x=-\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{-8}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{12}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±2}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ -10.
x=-2
ຫານ -12 ດ້ວຍ 6.
x=-\frac{4}{3} x=-2
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}+10x+8=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
3x^{2}+10x+8-8=-8
ລົບ 8 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
3x^{2}+10x=-8
ການລົບ 8 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{3x^{2}+10x}{3}=-\frac{8}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}+\frac{10}{3}x=-\frac{8}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
ຫານ \frac{10}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{1}{9}
ເພີ່ມ -\frac{8}{3} ໃສ່ \frac{25}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{5}{3}\right)^{2}=\frac{1}{9}
ຕົວປະກອບ x^{2}+\frac{10}{3}x+\frac{25}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{3}=\frac{1}{3} x+\frac{5}{3}=-\frac{1}{3}
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{4}{3} x=-2
ລົບ \frac{5}{3} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}