ຕົວປະກອບ
\left(n-2\right)\left(3n+1\right)
ປະເມີນ
\left(n-2\right)\left(3n+1\right)
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-5 ab=3\left(-2\right)=-6
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 3n^{2}+an+bn-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(3n^{2}-6n\right)+\left(n-2\right)
ຂຽນ 3n^{2}-5n-2 ຄືນໃໝ່ເປັນ \left(3n^{2}-6n\right)+\left(n-2\right).
3n\left(n-2\right)+n-2
ແຍກ 3n ອອກໃນ 3n^{2}-6n.
\left(n-2\right)\left(3n+1\right)
ແຍກຄຳທົ່ວໄປ n-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
3n^{2}-5n-2=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
n=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
n=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
n=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
ເພີ່ມ 25 ໃສ່ 24.
n=\frac{-\left(-5\right)±7}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
n=\frac{5±7}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
n=\frac{5±7}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
n=\frac{12}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ n=\frac{5±7}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 7.
n=2
ຫານ 12 ດ້ວຍ 6.
n=-\frac{2}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ n=\frac{5±7}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 5.
n=-\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{-2}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
3n^{2}-5n-2=3\left(n-2\right)\left(n-\left(-\frac{1}{3}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 2 ເປັນ x_{1} ແລະ -\frac{1}{3} ເປັນ x_{2}.
3n^{2}-5n-2=3\left(n-2\right)\left(n+\frac{1}{3}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
3n^{2}-5n-2=3\left(n-2\right)\times \frac{3n+1}{3}
ເພີ່ມ \frac{1}{3} ໃສ່ n ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
3n^{2}-5n-2=\left(n-2\right)\left(3n+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 3 ໃນ 3 ແລະ 3.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}