ແກ້ສຳລັບ x (complex solution)
x=\frac{-\sqrt{2}i+1}{3}\approx 0,333333333-0,471404521i
x=5
x=\frac{1+\sqrt{2}i}{3}\approx 0,333333333+0,471404521i
x=-1
ແກ້ສຳລັບ x
x=-1
x=5
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
±\frac{5}{3},±5,±\frac{1}{3},±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ -5 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 3. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=-1
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
3x^{3}-17x^{2}+11x-5=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ 3x^{4}-14x^{3}-6x^{2}+6x-5 ດ້ວຍ x+1 ເພື່ອໄດ້ 3x^{3}-17x^{2}+11x-5. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ -5 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 3. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=5
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
3x^{2}-2x+1=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ 3x^{3}-17x^{2}+11x-5 ດ້ວຍ x-5 ເພື່ອໄດ້ 3x^{2}-2x+1. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 3 ໃຫ້ a, -2 ໃຫ້ b ແລະ 1 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{2±\sqrt{-8}}{6}
ເລີ່ມຄຳນວນ.
x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
ແກ້ສົມຜົນ 3x^{2}-2x+1=0 ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
x=-1 x=5 x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
ລາຍຊື່ຂອງວິທີແກ້ໄຂທັງໝົດທີ່ພົບ.
±\frac{5}{3},±5,±\frac{1}{3},±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ -5 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 3. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=-1
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
3x^{3}-17x^{2}+11x-5=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ 3x^{4}-14x^{3}-6x^{2}+6x-5 ດ້ວຍ x+1 ເພື່ອໄດ້ 3x^{3}-17x^{2}+11x-5. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ -5 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 3. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=5
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
3x^{2}-2x+1=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ 3x^{3}-17x^{2}+11x-5 ດ້ວຍ x-5 ເພື່ອໄດ້ 3x^{2}-2x+1. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 3 ໃຫ້ a, -2 ໃຫ້ b ແລະ 1 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{2±\sqrt{-8}}{6}
ເລີ່ມຄຳນວນ.
x\in \emptyset
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ.
x=-1 x=5
ລາຍຊື່ຂອງວິທີແກ້ໄຂທັງໝົດທີ່ພົບ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}