Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-1 ab=3\left(-2\right)=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
ຂຽນ 3x^{2}-x-2 ຄືນໃໝ່ເປັນ \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=1 x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-1=0 ແລະ 3x+2=0.
3x^{2}-x-2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -1 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
ເພີ່ມ 1 ໃສ່ 24.
x=\frac{-\left(-1\right)±5}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 25.
x=\frac{1±5}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±5}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{6}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±5}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 5.
x=1
ຫານ 6 ດ້ວຍ 6.
x=-\frac{4}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±5}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ 1.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=1 x=-\frac{2}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}-x-2=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
3x^{2}-x-2-\left(-2\right)=-\left(-2\right)
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
3x^{2}-x=-\left(-2\right)
ການລົບ -2 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
3x^{2}-x=2
ລົບ -2 ອອກຈາກ 0.
\frac{3x^{2}-x}{3}=\frac{2}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
ຫານ -\frac{1}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{6}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{6} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{6} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
ເພີ່ມ \frac{2}{3} ໃສ່ \frac{1}{36} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
ຕົວປະກອບ x^{2}-\frac{1}{3}x+\frac{1}{36}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=-\frac{2}{3}
ເພີ່ມ \frac{1}{6} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.