ແກ້ສຳລັບ x
x=-1
x=6
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
3x^{2}-15x-18=0
ລົບ 18 ອອກຈາກທັງສອງຂ້າງ.
x^{2}-5x-6=0
ຫານທັງສອງຂ້າງດ້ວຍ 3.
a+b=-5 ab=1\left(-6\right)=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(x^{2}-6x\right)+\left(x-6\right)
ຂຽນ x^{2}-5x-6 ຄືນໃໝ່ເປັນ \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
ແຍກ x ອອກໃນ x^{2}-6x.
\left(x-6\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ x-6 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=6 x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-6=0 ແລະ x+1=0.
3x^{2}-15x=18
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
3x^{2}-15x-18=18-18
ລົບ 18 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
3x^{2}-15x-18=0
ການລົບ 18 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -15 ສຳລັບ b ແລະ -18 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
ເພີ່ມ 225 ໃສ່ 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 441.
x=\frac{15±21}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -15 ແມ່ນ 15.
x=\frac{15±21}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{36}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{15±21}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 15 ໃສ່ 21.
x=6
ຫານ 36 ດ້ວຍ 6.
x=-\frac{6}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{15±21}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 21 ອອກຈາກ 15.
x=-1
ຫານ -6 ດ້ວຍ 6.
x=6 x=-1
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}-15x=18
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-5x=\frac{18}{3}
ຫານ -15 ດ້ວຍ 3.
x^{2}-5x=6
ຫານ 18 ດ້ວຍ 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
ຫານ -5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
ເພີ່ມ 6 ໃສ່ \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
ຕົວປະກອບ x^{2}-5x+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
ເຮັດໃຫ້ງ່າຍ.
x=6 x=-1
ເພີ່ມ \frac{5}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}