Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3\left(x^{2}-4x+4\right)
ຕົວປະກອບຈາກ 3.
\left(x-2\right)^{2}
ພິຈາລະນາ x^{2}-4x+4. ໃຊ້ສູດຄຳນວນ perfect square, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ໃນ a=x ແລະ b=2.
3\left(x-2\right)^{2}
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
factor(3x^{2}-12x+12)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(3,-12,12)=3
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
3\left(x^{2}-4x+4\right)
ຕົວປະກອບຈາກ 3.
\sqrt{4}=2
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 4.
3\left(x-2\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
3x^{2}-12x+12=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ 12.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
ເພີ່ມ 144 ໃສ່ -144.
x=\frac{-\left(-12\right)±0}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{12±0}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -12 ແມ່ນ 12.
x=\frac{12±0}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
3x^{2}-12x+12=3\left(x-2\right)\left(x-2\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 2 ເປັນ x_{1} ແລະ 2 ເປັນ x_{2}.