Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x (complex solution)
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}+5x+6=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, 5 ສຳລັບ b ແລະ 6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
ຄູນ -12 ໃຫ້ກັບ 6.
x=\frac{-5±\sqrt{-47}}{2\times 3}
ເພີ່ມ 25 ໃສ່ -72.
x=\frac{-5±\sqrt{47}i}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ -47.
x=\frac{-5±\sqrt{47}i}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{-5+\sqrt{47}i}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±\sqrt{47}i}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ i\sqrt{47}.
x=\frac{-\sqrt{47}i-5}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±\sqrt{47}i}{6} ເມື່ອ ± ເປັນລົບ. ລົບ i\sqrt{47} ອອກຈາກ -5.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x^{2}+5x+6=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
3x^{2}+5x+6-6=-6
ລົບ 6 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
3x^{2}+5x=-6
ການລົບ 6 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}+\frac{5}{3}x=-2
ຫານ -6 ດ້ວຍ 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
ຫານ \frac{5}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{6}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{6} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{6} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
ເພີ່ມ -2 ໃສ່ \frac{25}{36}.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
ຕົວປະກອບ x^{2}+\frac{5}{3}x+\frac{25}{36}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
ລົບ \frac{5}{6} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.