Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3\left(x^{2}+4x\right)
ຕົວປະກອບຈາກ 3.
x\left(x+4\right)
ພິຈາລະນາ x^{2}+4x. ຕົວປະກອບຈາກ x.
3x\left(x+4\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
3x^{2}+12x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-12±12}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 12^{2}.
x=\frac{-12±12}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{0}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-12±12}{6} ເມື່ອ ± ບວກ. ເພີ່ມ -12 ໃສ່ 12.
x=0
ຫານ 0 ດ້ວຍ 6.
x=-\frac{24}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-12±12}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 12 ອອກຈາກ -12.
x=-4
ຫານ -24 ດ້ວຍ 6.
3x^{2}+12x=3x\left(x-\left(-4\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ -4 ເປັນ x_{2}.
3x^{2}+12x=3x\left(x+4\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.