ປະເມີນ
\frac{31\sqrt{6}}{16}\approx 4,745886377
ແບ່ງປັນ
ສໍາເນົາຄລິບ
3\sqrt{\frac{6+2}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຄູນ 2 ກັບ 3 ເພື່ອໃຫ້ໄດ້ 6.
3\sqrt{\frac{8}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ເພີ່ມ 6 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 8.
3\times \frac{\sqrt{8}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຂຽນຮາກຂັ້ນສອງຂອງການແບ່ງ \sqrt{\frac{8}{3}} ຄືນໃໝ່ເປັນຕົວແບ່ງຂອງຮາກຂັ້ນສອງ \frac{\sqrt{8}}{\sqrt{3}}.
3\times \frac{2\sqrt{2}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຕົວປະກອບ 8=2^{2}\times 2. ຂຽນຮາກຂັ້ນສອງຂອງຜົນຄູນ \sqrt{2^{2}\times 2} ເປັນຜົນຄູນຂອງຮາກຂັ້ນສອງ \sqrt{2^{2}}\sqrt{2}. ເອົາຮາກຂັ້ນສອງຂອງ 2^{2}.
3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{2\sqrt{2}}{\sqrt{3}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{3}.
3\times \frac{2\sqrt{2}\sqrt{3}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
3\times \frac{2\sqrt{6}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ເພື່ອຄູນ \sqrt{2} ແລະ \sqrt{3}, ໃຫ້ຄູນຈຳນວນພາຍໃຕ້ຮາກຂັ້ນສູງ.
2\sqrt{6}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຍົກເລີກ 3 ແລະ 3.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
ຂຽນຮາກຂັ້ນສອງຂອງການແບ່ງ \sqrt{\frac{2}{5}} ຄືນໃໝ່ເປັນຕົວແບ່ງຂອງຮາກຂັ້ນສອງ \frac{\sqrt{2}}{\sqrt{5}}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{\sqrt{2}}{\sqrt{5}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{5}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
ຮາກຂອງ \sqrt{5} ແມ່ນ 5.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
ເພື່ອຄູນ \sqrt{2} ແລະ \sqrt{5}, ໃຫ້ຄູນຈຳນວນພາຍໃຕ້ຮາກຂັ້ນສູງ.
2\sqrt{6}+\frac{1\left(-1\right)}{2\times 8}\times \frac{\sqrt{10}}{5}\sqrt{15}
ຄູນ \frac{1}{2} ກັບ -\frac{1}{8} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ.
2\sqrt{6}+\frac{-1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
ຄູນໃນເສດສ່ວນ \frac{1\left(-1\right)}{2\times 8}.
2\sqrt{6}-\frac{1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
ເສດ \frac{-1}{16} ສາມາດຂຽນຄືນເປັນ -\frac{1}{16} ໄດ້ໂດຍການສະກັດເຄື່ອງໝາຍລົບອອກ.
2\sqrt{6}+\frac{-\sqrt{10}}{16\times 5}\sqrt{15}
ຄູນ -\frac{1}{16} ກັບ \frac{\sqrt{10}}{5} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ.
2\sqrt{6}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
ສະແດງ \frac{-\sqrt{10}}{16\times 5}\sqrt{15} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{2\sqrt{6}\times 16\times 5}{16\times 5}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ 2\sqrt{6} ໃຫ້ກັບ \frac{16\times 5}{16\times 5}.
\frac{2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}}{16\times 5}
ເນື່ອງຈາກ \frac{2\sqrt{6}\times 16\times 5}{16\times 5} ແລະ \frac{-\sqrt{10}\sqrt{15}}{16\times 5} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{160\sqrt{6}-5\sqrt{6}}{16\times 5}
ຄູນໃນເສດສ່ວນ 2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}.
\frac{155\sqrt{6}}{16\times 5}
ຄຳນວນໃນ 160\sqrt{6}-5\sqrt{6}.
\frac{31\sqrt{6}}{16}
ຍົກເລີກ 5 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}