ແກ້ສຳລັບ x
x = \frac{\sqrt{59} - 3}{2} \approx 2,340572874
x=\frac{-\sqrt{59}-3}{2}\approx -5,340572874
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2x\left(3+x\right)=25
ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 5.
6x+2x^{2}=25
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 2x ດ້ວຍ 3+x.
6x+2x^{2}-25=0
ລົບ 25 ອອກຈາກທັງສອງຂ້າງ.
2x^{2}+6x-25=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-25\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, 6 ສຳລັບ b ແລະ -25 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\left(-25\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 6.
x=\frac{-6±\sqrt{36-8\left(-25\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-6±\sqrt{36+200}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -25.
x=\frac{-6±\sqrt{236}}{2\times 2}
ເພີ່ມ 36 ໃສ່ 200.
x=\frac{-6±2\sqrt{59}}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 236.
x=\frac{-6±2\sqrt{59}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{2\sqrt{59}-6}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±2\sqrt{59}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 2\sqrt{59}.
x=\frac{\sqrt{59}-3}{2}
ຫານ -6+2\sqrt{59} ດ້ວຍ 4.
x=\frac{-2\sqrt{59}-6}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±2\sqrt{59}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 2\sqrt{59} ອອກຈາກ -6.
x=\frac{-\sqrt{59}-3}{2}
ຫານ -6-2\sqrt{59} ດ້ວຍ 4.
x=\frac{\sqrt{59}-3}{2} x=\frac{-\sqrt{59}-3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x\left(3+x\right)=25
ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 5.
6x+2x^{2}=25
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 2x ດ້ວຍ 3+x.
2x^{2}+6x=25
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{2x^{2}+6x}{2}=\frac{25}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}+\frac{6}{2}x=\frac{25}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}+3x=\frac{25}{2}
ຫານ 6 ດ້ວຍ 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{25}{2}+\left(\frac{3}{2}\right)^{2}
ຫານ 3, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{3}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{3}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+3x+\frac{9}{4}=\frac{25}{2}+\frac{9}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{3}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+3x+\frac{9}{4}=\frac{59}{4}
ເພີ່ມ \frac{25}{2} ໃສ່ \frac{9}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{3}{2}\right)^{2}=\frac{59}{4}
ຕົວປະກອບ x^{2}+3x+\frac{9}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{3}{2}=\frac{\sqrt{59}}{2} x+\frac{3}{2}=-\frac{\sqrt{59}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{59}-3}{2} x=\frac{-\sqrt{59}-3}{2}
ລົບ \frac{3}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}