Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

12\left(2x^{2}+3x\right)
ຕົວປະກອບຈາກ 12.
x\left(2x+3\right)
ພິຈາລະນາ 2x^{2}+3x. ຕົວປະກອບຈາກ x.
12x\left(2x+3\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
24x^{2}+36x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}}}{2\times 24}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-36±36}{2\times 24}
ເອົາຮາກຂັ້ນສອງຂອງ 36^{2}.
x=\frac{-36±36}{48}
ຄູນ 2 ໃຫ້ກັບ 24.
x=\frac{0}{48}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-36±36}{48} ເມື່ອ ± ບວກ. ເພີ່ມ -36 ໃສ່ 36.
x=0
ຫານ 0 ດ້ວຍ 48.
x=-\frac{72}{48}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-36±36}{48} ເມື່ອ ± ເປັນລົບ. ລົບ 36 ອອກຈາກ -36.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-72}{48} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 24.
24x^{2}+36x=24x\left(x-\left(-\frac{3}{2}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ -\frac{3}{2} ເປັນ x_{2}.
24x^{2}+36x=24x\left(x+\frac{3}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
24x^{2}+36x=24x\times \frac{2x+3}{2}
ເພີ່ມ \frac{3}{2} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
24x^{2}+36x=12x\left(2x+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 2 ໃນ 24 ແລະ 2.