ແກ້ສຳລັບ x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=3
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-1 ab=2\left(-15\right)=-30
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 2x^{2}+ax+bx-15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-30 2,-15 3,-10 5,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(2x^{2}-6x\right)+\left(5x-15\right)
ຂຽນ 2x^{2}-x-15 ຄືນໃໝ່ເປັນ \left(2x^{2}-6x\right)+\left(5x-15\right).
2x\left(x-3\right)+5\left(x-3\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(2x+5\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=3 x=-\frac{5}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ 2x+5=0.
2x^{2}-x-15=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -1 ສຳລັບ b ແລະ -15 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-15\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -15.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 2}
ເພີ່ມ 1 ໃສ່ 120.
x=\frac{-\left(-1\right)±11}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 121.
x=\frac{1±11}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±11}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{12}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±11}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 11.
x=3
ຫານ 12 ດ້ວຍ 4.
x=-\frac{10}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±11}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ 1.
x=-\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{-10}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=3 x=-\frac{5}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-x-15=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}-x-15-\left(-15\right)=-\left(-15\right)
ເພີ່ມ 15 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x^{2}-x=-\left(-15\right)
ການລົບ -15 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2x^{2}-x=15
ລົບ -15 ອອກຈາກ 0.
\frac{2x^{2}-x}{2}=\frac{15}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{1}{2}x=\frac{15}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{4}\right)^{2}
ຫານ -\frac{1}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{15}{2}+\frac{1}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{121}{16}
ເພີ່ມ \frac{15}{2} ໃສ່ \frac{1}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{4}\right)^{2}=\frac{121}{16}
ຕົວປະກອບ x^{2}-\frac{1}{2}x+\frac{1}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{4}=\frac{11}{4} x-\frac{1}{4}=-\frac{11}{4}
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-\frac{5}{2}
ເພີ່ມ \frac{1}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}