Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2x^{2}-x=4
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
2x^{2}-x-4=4-4
ລົບ 4 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
2x^{2}-x-4=0
ການລົບ 4 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-4\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -1 ສຳລັບ b ແລະ -4 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-4\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-1\right)±\sqrt{1+32}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -4.
x=\frac{-\left(-1\right)±\sqrt{33}}{2\times 2}
ເພີ່ມ 1 ໃສ່ 32.
x=\frac{1±\sqrt{33}}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±\sqrt{33}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{\sqrt{33}+1}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{33}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ \sqrt{33}.
x=\frac{1-\sqrt{33}}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{33}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{33} ອອກຈາກ 1.
x=\frac{\sqrt{33}+1}{4} x=\frac{1-\sqrt{33}}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-x=4
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{2x^{2}-x}{2}=\frac{4}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{1}{2}x=\frac{4}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{1}{2}x=2
ຫານ 4 ດ້ວຍ 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=2+\left(-\frac{1}{4}\right)^{2}
ຫານ -\frac{1}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=2+\frac{1}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{33}{16}
ເພີ່ມ 2 ໃສ່ \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{33}{16}
ຕົວປະກອບ x^{2}-\frac{1}{2}x+\frac{1}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{4}=\frac{\sqrt{33}}{4} x-\frac{1}{4}=-\frac{\sqrt{33}}{4}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{33}+1}{4} x=\frac{1-\sqrt{33}}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.