Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x (complex solution)
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2x^{2}-9x+18=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 18}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -9 ສຳລັບ b ແລະ 18 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 18}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\times 18}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-9\right)±\sqrt{81-144}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ 18.
x=\frac{-\left(-9\right)±\sqrt{-63}}{2\times 2}
ເພີ່ມ 81 ໃສ່ -144.
x=\frac{-\left(-9\right)±3\sqrt{7}i}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ -63.
x=\frac{9±3\sqrt{7}i}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -9 ແມ່ນ 9.
x=\frac{9±3\sqrt{7}i}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{9+3\sqrt{7}i}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{9±3\sqrt{7}i}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 9 ໃສ່ 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+9}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{9±3\sqrt{7}i}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 3i\sqrt{7} ອອກຈາກ 9.
x=\frac{9+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i+9}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-9x+18=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}-9x+18-18=-18
ລົບ 18 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
2x^{2}-9x=-18
ການລົບ 18 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{2x^{2}-9x}{2}=-\frac{18}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{9}{2}x=-\frac{18}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{9}{2}x=-9
ຫານ -18 ດ້ວຍ 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-9+\left(-\frac{9}{4}\right)^{2}
ຫານ -\frac{9}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{9}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{9}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-9+\frac{81}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{9}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{63}{16}
ເພີ່ມ -9 ໃສ່ \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=-\frac{63}{16}
ຕົວປະກອບ x^{2}-\frac{9}{2}x+\frac{81}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{-\frac{63}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{9}{4}=\frac{3\sqrt{7}i}{4} x-\frac{9}{4}=-\frac{3\sqrt{7}i}{4}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{9+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i+9}{4}
ເພີ່ມ \frac{9}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.