Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}-4x-12=0
ຫານທັງສອງຂ້າງດ້ວຍ 2.
a+b=-4 ab=1\left(-12\right)=-12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx-12. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
ຂຽນ x^{2}-4x-12 ຄືນໃໝ່ເປັນ \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-6\right)\left(x+2\right)
ແຍກຄຳທົ່ວໄປ x-6 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=6 x=-2
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-6=0 ແລະ x+2=0.
2x^{2}-8x-24=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -8 ສຳລັບ b ແລະ -24 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -24.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
ເພີ່ມ 64 ໃສ່ 192.
x=\frac{-\left(-8\right)±16}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 256.
x=\frac{8±16}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -8 ແມ່ນ 8.
x=\frac{8±16}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{24}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±16}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 8 ໃສ່ 16.
x=6
ຫານ 24 ດ້ວຍ 4.
x=-\frac{8}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±16}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 16 ອອກຈາກ 8.
x=-2
ຫານ -8 ດ້ວຍ 4.
x=6 x=-2
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-8x-24=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}-8x-24-\left(-24\right)=-\left(-24\right)
ເພີ່ມ 24 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x^{2}-8x=-\left(-24\right)
ການລົບ -24 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2x^{2}-8x=24
ລົບ -24 ອອກຈາກ 0.
\frac{2x^{2}-8x}{2}=\frac{24}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{24}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-4x=\frac{24}{2}
ຫານ -8 ດ້ວຍ 2.
x^{2}-4x=12
ຫານ 24 ດ້ວຍ 2.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
ຫານ -4, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -2. ຈາກນັ້ນເພີ່ມຮາກຂອງ -2 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-4x+4=12+4
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -2.
x^{2}-4x+4=16
ເພີ່ມ 12 ໃສ່ 4.
\left(x-2\right)^{2}=16
ຕົວປະກອບ x^{2}-4x+4. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-2=4 x-2=-4
ເຮັດໃຫ້ງ່າຍ.
x=6 x=-2
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.