ຕົວປະກອບ
2\left(x-6\right)\left(x-3\right)
ປະເມີນ
2\left(x-6\right)\left(x-3\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2\left(x^{2}-9x+18\right)
ຕົວປະກອບຈາກ 2.
a+b=-9 ab=1\times 18=18
ພິຈາລະນາ x^{2}-9x+18. ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx+18. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-18 -2,-9 -3,-6
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 18.
-1-18=-19 -2-9=-11 -3-6=-9
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=-3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -9.
\left(x^{2}-6x\right)+\left(-3x+18\right)
ຂຽນ x^{2}-9x+18 ຄືນໃໝ່ເປັນ \left(x^{2}-6x\right)+\left(-3x+18\right).
x\left(x-6\right)-3\left(x-6\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ -3 ໃນກຸ່ມທີສອງ.
\left(x-6\right)\left(x-3\right)
ແຍກຄຳທົ່ວໄປ x-6 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2\left(x-6\right)\left(x-3\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
2x^{2}-18x+36=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 36}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 36}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -18.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 36}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-18\right)±\sqrt{324-288}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ 36.
x=\frac{-\left(-18\right)±\sqrt{36}}{2\times 2}
ເພີ່ມ 324 ໃສ່ -288.
x=\frac{-\left(-18\right)±6}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 36.
x=\frac{18±6}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -18 ແມ່ນ 18.
x=\frac{18±6}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{24}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{18±6}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 18 ໃສ່ 6.
x=6
ຫານ 24 ດ້ວຍ 4.
x=\frac{12}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{18±6}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 6 ອອກຈາກ 18.
x=3
ຫານ 12 ດ້ວຍ 4.
2x^{2}-18x+36=2\left(x-6\right)\left(x-3\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 6 ເປັນ x_{1} ແລະ 3 ເປັນ x_{2}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}