Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=7 ab=2\left(-15\right)=-30
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 2x^{2}+ax+bx-15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,30 -2,15 -3,10 -5,6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=10
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(2x^{2}-3x\right)+\left(10x-15\right)
ຂຽນ 2x^{2}+7x-15 ຄືນໃໝ່ເປັນ \left(2x^{2}-3x\right)+\left(10x-15\right).
x\left(2x-3\right)+5\left(2x-3\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(2x-3\right)\left(x+5\right)
ແຍກຄຳທົ່ວໄປ 2x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{3}{2} x=-5
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2x-3=0 ແລະ x+5=0.
2x^{2}+7x-15=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, 7 ສຳລັບ b ແລະ -15 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -15.
x=\frac{-7±\sqrt{169}}{2\times 2}
ເພີ່ມ 49 ໃສ່ 120.
x=\frac{-7±13}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
x=\frac{-7±13}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{6}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±13}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 13.
x=\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{6}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{20}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±13}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ -7.
x=-5
ຫານ -20 ດ້ວຍ 4.
x=\frac{3}{2} x=-5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}+7x-15=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}+7x-15-\left(-15\right)=-\left(-15\right)
ເພີ່ມ 15 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x^{2}+7x=-\left(-15\right)
ການລົບ -15 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2x^{2}+7x=15
ລົບ -15 ອອກຈາກ 0.
\frac{2x^{2}+7x}{2}=\frac{15}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}+\frac{7}{2}x=\frac{15}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\frac{15}{2}+\left(\frac{7}{4}\right)^{2}
ຫານ \frac{7}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{7}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{7}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{15}{2}+\frac{49}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{7}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{169}{16}
ເພີ່ມ \frac{15}{2} ໃສ່ \frac{49}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{7}{4}\right)^{2}=\frac{169}{16}
ຕົວປະກອບ x^{2}+\frac{7}{2}x+\frac{49}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{7}{4}=\frac{13}{4} x+\frac{7}{4}=-\frac{13}{4}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{3}{2} x=-5
ລົບ \frac{7}{4} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.