ຕົວປະກອບ
\left(x+7\right)\left(2x+3\right)
ປະເມີນ
\left(x+7\right)\left(2x+3\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=17 ab=2\times 21=42
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 2x^{2}+ax+bx+21. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,42 2,21 3,14 6,7
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 42.
1+42=43 2+21=23 3+14=17 6+7=13
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=3 b=14
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 17.
\left(2x^{2}+3x\right)+\left(14x+21\right)
ຂຽນ 2x^{2}+17x+21 ຄືນໃໝ່ເປັນ \left(2x^{2}+3x\right)+\left(14x+21\right).
x\left(2x+3\right)+7\left(2x+3\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 7 ໃນກຸ່ມທີສອງ.
\left(2x+3\right)\left(x+7\right)
ແຍກຄຳທົ່ວໄປ 2x+3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2x^{2}+17x+21=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\times 2\times 21}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-17±\sqrt{289-4\times 2\times 21}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 17.
x=\frac{-17±\sqrt{289-8\times 21}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-17±\sqrt{289-168}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ 21.
x=\frac{-17±\sqrt{121}}{2\times 2}
ເພີ່ມ 289 ໃສ່ -168.
x=\frac{-17±11}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 121.
x=\frac{-17±11}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=-\frac{6}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-17±11}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -17 ໃສ່ 11.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-6}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{28}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-17±11}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ -17.
x=-7
ຫານ -28 ດ້ວຍ 4.
2x^{2}+17x+21=2\left(x-\left(-\frac{3}{2}\right)\right)\left(x-\left(-7\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{3}{2} ເປັນ x_{1} ແລະ -7 ເປັນ x_{2}.
2x^{2}+17x+21=2\left(x+\frac{3}{2}\right)\left(x+7\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
2x^{2}+17x+21=2\times \frac{2x+3}{2}\left(x+7\right)
ເພີ່ມ \frac{3}{2} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
2x^{2}+17x+21=\left(2x+3\right)\left(x+7\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 2 ໃນ 2 ແລະ 2.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}