Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2\left(x^{2}+5x+6\right)
ຕົວປະກອບຈາກ 2.
a+b=5 ab=1\times 6=6
ພິຈາລະນາ x^{2}+5x+6. ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx+6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,6 2,3
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 6.
1+6=7 2+3=5
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
ຂຽນ x^{2}+5x+6 ຄືນໃໝ່ເປັນ \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(x+2\right)\left(x+3\right)
ແຍກຄຳທົ່ວໄປ x+2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2\left(x+2\right)\left(x+3\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
2x^{2}+10x+12=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 12}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-10±\sqrt{100-4\times 2\times 12}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 10.
x=\frac{-10±\sqrt{100-8\times 12}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-10±\sqrt{100-96}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ 12.
x=\frac{-10±\sqrt{4}}{2\times 2}
ເພີ່ມ 100 ໃສ່ -96.
x=\frac{-10±2}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 4.
x=\frac{-10±2}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=-\frac{8}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±2}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -10 ໃສ່ 2.
x=-2
ຫານ -8 ດ້ວຍ 4.
x=-\frac{12}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±2}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ -10.
x=-3
ຫານ -12 ດ້ວຍ 4.
2x^{2}+10x+12=2\left(x-\left(-2\right)\right)\left(x-\left(-3\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -2 ເປັນ x_{1} ແລະ -3 ເປັນ x_{2}.
2x^{2}+10x+12=2\left(x+2\right)\left(x+3\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.